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Abstract

Microchannel flow with electrolyte solution is often influenced by the presence of a double layer of electrical charges

at the interface between the liquid and the wall of a substrate. These surface interactions affect strongly the physical and

chemical properties of fluid and substantially influence the heat, mass and momentum transport in microfluidic systems.

Traditional computational fluid dynamics methods using the modified Navier–Stokes equation for electrokinetics in

solving macroscopic hydrodynamic equations have many difficulties in this area. We present here a lattice Boltzmann

model in the presence of external force fields to describe electrokinetic microfluidic phenomena using a Poisson–

Boltzmann equation. Pressure is considered as the only external force to drive liquid flow in microchannels. Our results

from a 9-bit square lattice Boltzmann model are in excellent agreement with recent experimental data in pressure-driven

microchannel flow that could not be fully described by electrokinetic theory. The differences between the predicted and

experimental Reynolds numbers from pressure gradients are well within 5%. Our results suggest that the lattice

Boltzmann model described here is an effective computational tool to predict the more complex microfluidic systems

that might be problematic using conventional methods.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Microchannel flow with electrolyte solution is often

influenced by the presence of a double layer of electrical

charges at the interface between the liquid and the wall

of a substrate. This double layer is also known as the

electrical double layer (EDL), causing the development

of a streaming potential when a pressure gradient is

applied to drive the flow or electroosmosis when an

electric field is applied. Applications where such phe-

nomena play an important role are in cooling of mi-
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croelectronics [1–3], lab-on-a-chip diagnostic devices [4]

and in vivo drug delivery systems [5,6].

As for the electrokinetic phenomena in general,

electrically neutral liquids have a distribution of elec-

trical charges near a surface because of a charged solid

surface. This region is known as the EDL, which induces

electrokinetic phenomena. The effect of EDL during an

externally applied pressure gradient is to retard liquid

flow, resulting in a streaming potential; whereas, in the

absence of an external pressure gradient, EDL induces

fluid flow when an external electric field is applied

(electroosmotic pumping). EDL is primarily a surface

phenomenon; its effects tend to appear when the typical

dimension of channel is of the same order as the EDL

thickness [7–12]. However, modeling of microfluidics

has not been an easy task because of the inherent
ed.
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complexity of surface and electrokinetic phenomena

on flow characteristics. These surface interactions affect

strongly the physical and chemical properties of fluid

[13,14] and substantially influence the heat, mass and

momentum transport in microfluidic systems [7,15–19].

In addition, traditional computational fluid dynamics

methods using the modified Navier–Stokes equation for

electrokinetics in solving macroscopic hydrodynamic

equations have many difficulties in this area. Since the

complexity of many fluid systems is essentially due to the

microscopic interparticle interaction, lattice Boltzmann

simulation provides an excellent alternative to model

such complex fluid dynamics problems [20]. In recent

years, the lattice Boltzmann method has attracted tre-

mendous attention as an alternative to solve complex

fluid dynamics problems. In particular, its simplicity of

programming, parallelism of the approach, and the ca-

pability of incorporating microscopic interactions have

been very attractive. Although the approach is based on

microscopic interactions, all macroscopic continuum

equations such as the Navier–Stokes equation can be

derived and recovered.

In the lattice Boltzmann method, space is divided

into a regular lattice. Each lattice point has an assigned

set of velocity vectors with specified magnitudes and

directions connecting the lattice point to its neighboring

lattice points. The total velocity and fluid density are

defined by specifying the amount of fluid associated with

each of the velocity vectors. The fluid distribution

function evolves at each time step through a two-step

procedure. The first step is to advance the fluid particles

to the next lattice site along their directions of motion.

The second step is to simulate particle collisions by re-

laxing the distribution toward an equilibrium distribu-

tion using a linear relaxation parameter.

The lattice Boltzmann equation (LBE) has been

demonstrated to be an effective computational tool for a

broad variety of complex physical systems, including

hydrodynamic system [21–28], magnetohydrodynamic

systems [29] and multiphase and multicomponent fluids

systems [30–33]. It has been shown [34–41] that the LBE

can be directly derived from the continuous Boltzmann

equation discretized in some special manner in both time

and phase space; the LBE is simply a finite-difference

form of the continuous Boltzmann equation. Most of

the applications that have been performed in the past

with lattice Boltzmann are for isothermal systems, due

to the lack of a general purpose energy model. Although

the LBE can be established on a solid theoretical foun-

dation, some approximations are required in order to

obtain the evolution equation of the distribution func-

tion f ðx; n; tÞ with discrete time and the equilibrium

distribution function f eqðx; n; tÞ for the LBE model. For

example, to use pressure P as an independent variable in

the incompressible Navier–Stokes equation for micro-

fluidics, it is necessary to introduce a local pressure
distribution function. These approximations lead to

certain limitations for practical application of the LBE.

As an example, the lattice Boltzmann method is only

applicable to low Mach number hydrodynamics, be-

cause a small velocity expansion is used in the derivation

of Navier–Stokes equation from the LBE [42].

In the present work, we employed an equilibrium

distribution function in the presence of external forces

and derived the LBE with an additional (external) force

term for microfluidics of electrolyte solution. These ex-

ternal forces can include the externally applied pressure

and the Lorentz force associated with any externally

applied electric and magnetic fields, internally smoothed

electric and magnetic fields due to the motion of charged

particles in space, and the equivalent force field due to

intermolecular attraction. Discretization of our velocity

space ensures that Navier–Stokes equation can be ob-

tained at a macroscopic level. Because of the large di-

mension of microchannel relative to the lattice size, the

primary focus of the lattice Boltzmann simulation ap-

propriate for modeling fluids in the microscale regime is

on the structure and dynamical properties of fluids near

the fluid-solid interface, such as the effect of wettability

on wall slip. Our derived lattice Boltzmann model will be

applied to simulate a series of microfluidic systems with

electrokinetic phenomena.
2. Lattice Boltzmann theory in the presence of external

forces

2.1. Discretization of time

We start from the following continuous Boltzmann

equation using a single-relaxation-time approximation

as a collision model,

of
ot

þ n � rf þ F � rnf ¼ � f � f eq

k
ð1Þ

where f � f ðx; n; tÞ is the single-particle distribution

function in the phase space ðx; nÞ, and n is the micro-

scopic velocity. F is an external force vector which can

depend on both space and time, k is the relaxation time

due to collision, and f eq is an equilibrium distribution

function. A fluid under steady state conditions, im-

mersed in a conservative force field, is characterized by a

distribution function that differs from the Maxwell-

Boltzmann distribution by an exponential factor, known

as the Boltzmann factor:

f eq ¼ q

ð2pRT ÞD=2
exp

�
� UðxÞ

kBT

�
exp

 
� ðn� uÞ2

2RT

!
ð2Þ

where UðxÞ is the potential energy of conservative force

field, R and D are the gas constant and dimension of
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space, respectively. The macroscopic density q, velocity
u, and temperature T are calculated as the moments of

the distribution function:

q ¼
Z

f dn

qu ¼
Z

nf dn

D0

2
qRT ¼ 1

2

Z
ðn� uÞ2f dn

ð3Þ

where D0 is the number of degrees of freedom of a

particle. He et al. [41] proposed a heuristic approach to

model the interaction between fluid particles as an

external force in the Boltzmann equation using a mean-

field approximation. This approach involved the

approximation, without proof, of substituting the dis-

tribution function in the force term (Eq. (1)) with its

equilibrium value, e.g., the local Maxwellian distribu-

tion. It should be noted that F � rnf is identical to

F � rnf eq up to second order because the first two Her-

mite coefficients of the distribution function are always

the same as those in the local Maxwellian distribution.

We assume

rnf � rnf eq ¼ � n� u
RT

f eq ð4Þ

Consequently, we obtain

of
ot

þ n � rf þ 1

k
f ¼ 1

k

�
þ F � ðn� uÞ

RT

�
f eq ð5Þ

Eq. (5) can be formally rewritten in the form of an or-

dinary differential equation:

df
dt

þ 1

k
f ¼ 1

k0
f eq ð6Þ

where
d

dt
� o

ot
þ n � r ð7Þ

is the time derivative along the characteristic line n.

1

k0
¼ 1

k
þ F � ðn� uÞ

RT
ð8Þ

is the reciprocal of equivalent relaxation time due to

external force. The above inhomogeneous ordinary dif-

ferential equation can be formally integrated over a

small time step of dt:

f ðxþ ndt; n; t þ dtÞ

¼ exp

�
� dt

k

�Z dt

0

1

k0
exp

t0

k

� �
f eqðxþ nt0; n; t þ t0Þdt0

þ exp

�
� dt

k

�
f ðx; n; tÞ ð9Þ

Assuming that dt is small enough and f eq is smooth

enough locally, the following first order approximation

can be made:
f eqðxþ nt0; n; t þ t0Þ

¼ f eqðx; n; tÞ þ t0

dt
ff eqðxþ ndt; n; t þ dtÞ � f eqðx; n; tÞg

þOðd2t Þ t0 2 ½0; dt� ð10Þ

With this approximation, Eq. (9) becomes

f ðxþ ndt; n; t þ dtÞ

¼ 1

k0
exp

�
� dt

k

�
k exp

dt
k

� ���
� 1

�
f eqðx; n; tÞ

þ k2

dt

dt
k

��
� 1

�
exp

dt
k

� �
þ 1

�
ðf eqðxþ ndt; n;

t þ dtÞ � f eqðx; n; tÞÞ
�
þ exp

�
� dt

k

�
f ðx; n; tÞ

ð11Þ

If we expand expð�dt=kÞ in its Taylor expansion and,

further, neglect the terms of order Oðd2t Þ or smaller on

the right-hand side of Eq. (11), then Eq. (11) becomes

f ðxþ ndt; n; t þ dtÞ � f ðx; n; tÞ

¼ � 1

s
f ðx; n; tÞ

�
� k

k0
f eqðx; n; tÞ

�
ð12Þ

where s � k=dt is a dimensionless relaxation time. Eq.

(12) is the evolution equation of the distribution func-

tion f ðx; n; tÞ with discrete time.

2.2. Hydrodynamic moments

Although f eq is written as an explicit function of t,
the time dependence of f eq lies solely in the hydro-

dynamic variables q, u, and T ; that is, f eqðx; n; tÞ ¼
f eqðx; n; q; u; T Þ. Therefore, one must first compute q, u,
and T before constructing the equilibrium distribution

function, f eq. Thus, the calculation of q, u, and T be-

comes one of the most crucial steps in discretizing the

Boltzmann equation.

In order to numerically evaluate the hydrodynamic

moments of Eq. (3), appropriate discretization in mo-

mentum space n must be accomplished; that isZ
wðnÞf ðx; n; tÞdn ¼

X
a

WawðnaÞf eqðx; na; tÞ ð13Þ

where wðnÞ is a polynomial of n, Wa is a weighted coef-

ficient of the quadrature, and na is the discrete velocity

set or the abscissas of the quadrature. Accordingly, the

hydrodynamic moments of Eq. (3) can be computed by

q ¼
X
a

fa

qu ¼
X
a

nafa

q� ¼ 1

2

X
a

ðna � uÞ2fa

fa � faðx; tÞ � Waf ðx; na; tÞ

� ¼ D0

2
RT

ð14Þ
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2.3. External force terms

In the simplified Boltzmann equation (5), F is the

external force experienced by each particle. A very useful

approximation to describe the dynamics of a fluid is to

consider the motions of fluid particles that are governed

by applied external fields with the macroscopic averaged

internal fields, and smoothed in space and time due to

the motion of all fluid particles. The external force terms

can be expressed as

F ¼ Fext þ qaðEint þ n� BintÞ þ FV ð15Þ

where Fext represents the external forces, including the

externally applied pressure and the Lorentz force asso-

ciated with any externally applied electric and magnetic

fields, Eint and Bint are, respectively, internally smoothed

electric and magnetic fields due to the motion of all

charged particles inside the fluid (e.g., the space charge

in the microfluidics), and FV is a single equivalent force

due to intermolecular attraction. In biochips or lab-on-

a-chip devices, water is usually used as the medium for a

buffer solution. Here, we employ a potential energy

function V ðRÞ of water to treat the intermolecular at-

traction. A large number of hypothetical models for

water have been developed in order to discover the

structure of water. These models involve orienting

electrostatic effects and Lennard-Jones sites which may

or may not coincide with one or more of the charged

sites. The Lennard-Jones interaction accounts for the

size of the molecules. It is repulsive at short distances,

ensuring that the structure does not completely collapse

due to electrostatic interactions. At intermediate dis-

tances it is significantly attractive but non-directional

and competes with the directional attractive electrostatic

interaction. The potential energy function considered

here involve a rigid water monomer that is represented

by three interaction sites with positive charges on the

hydrogens and a negative charge on oxygen. The Cou-

lombic interactions between all intermolecular pairs of

charges along with a single Lennard-Jones term between

oxygens determine the dimerization energy V ðRÞ for

monomers m and n as given by Eq. (16)

V ðRÞ ¼
X
i;j

qiqje2

�r�0rijðRÞ
þ A

ðrijðRÞÞ12
� B

ðrijðRÞÞ6
ð16Þ

The parameters qi, qj, A, and B can be chosen to yield

reasonable structural and energetic results for liquid

water. It should be stressed in the framework of the

present derivation that anisotropy is a consequence of

an inappropriate intermolecular interaction. A single

equivalent force field due to intermolecular attraction

yield

F ¼ �rV ðRÞ ð17Þ
V
2.4. Derivation of the lattice Boltzmann equation and its

equilibrium distribution function in two-dimensional space

The LBE has the following ingredients: (1) an evo-

lution equation, in the form of Eq. (12) with discretized

time and phase space in which configuration space is of a

lattice structure and momentum space is reduced to a

small set of discrete momenta; (2) conservation con-

straints in the form of the hydrodynamic moments; (3) a

proper equilibrium distribution function which leads to

the Navier–Stokes equations. In what follows, the low

Mach number expansion is first applied to the Maxwell-

Boltzmann distribution function by an Boltzmann fac-

tor. In the LBEs, the equilibrium distribution function

f eqðx; n; tÞ is obtained by a truncated small velocity ex-

pansion.

f eqðx; n; tÞ ¼ q

ð2pRT ÞD=2
exp

�
� UðxÞ

RT

�
exp

�
� n2

2RT

�

� 1

"
þ n � u

RT
þ ðn � uÞ2

2ðRT Þ2
� u2

2RT

#
þOðu3Þ

ð18Þ

Calculating the hydrodynamic moments of f eq is

equivalent to evaluating the following integral in gen-

eral:

I ¼
Z

wðnÞf eq dn

¼ q

ð2pRT ÞD=2
exp

�
� UðxÞ

kBT

�Z
wðnÞ exp

�
� n2

2RT

�

� 1

"
þ n � u

RT
þ ðn � uÞ2

2ðRT Þ2
� u2

2RT

#
dn ð19Þ

The discretization of the 9-bit lattice single-relaxation-

time model can be found elsewhere [36,42].

Employing the notation of the 9-bit discrete velocities

and the weighted coefficients xa, we obtained the equi-

librium function for the 9-bit LBE model as

f eq
a ¼ xaq exp

�
� UðxÞ

kBT

�
1

"
þ 3ðea � uÞ

c2

þ 9ðea � uÞ2

2c4
� 3u2

2c2

#
ð20Þ

where

ea ¼

ð0; 0Þ a ¼ 0

cos pða�1Þ
2

h i
; sin pða�1Þ

2

h i� �
c

a ¼ 1; 2; 3; 4

cos pða�5Þ
2

þ p
4

h i
; sin pða�5Þ

2
þ p

4

h i� � ffiffiffiffiffi
2c

p

a ¼ 5; 6; 7; 8

8>>>>>>><>>>>>>>:
ð21Þ
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and xa ¼ 4=9 for a ¼ 0, 1/9 for a ¼ 1–4, and 1/36 for

a ¼ 5–8; c ¼ dx=dt, and dx and dt are the lattice constant
and time step size, respectively.

The evolution equation (12) of f can be written as

faðxþ eadt; t þ dtÞ � faðx; tÞ

¼ � 1

s
faðx; tÞ
�

� 1

�
þ 3s

d2t
dx

ðea � uÞ � F
c

�
f eq
a

�
ð22Þ
3. Results and discussion

3.1. Analytic solution of pressure-driven liquid flow

through microchannel in the presence of the electrical

double layer

In this section, we use the square 9-bit lattice single-

relaxation-time model in the presence of a conservative

force field. As mentioned above, the 9-bit lattice single-

relaxation-time is on a square lattice space with three

speeds: 0, c, and
ffiffiffi
2

p
c, where c ¼ dx=dt, and dx and dt are

the lattice constant and step size in time, respectively.

The evolution equation (12) of the system can be sim-

plified as

faðxþ eadt; t þ dtÞ � faðx; tÞ

¼ � 1

s
faðx; tÞ
�

� f eq
a ðq; uÞ

	
þ d2t

dx
ga ð23Þ

where the body force term ga is given by

ga ¼

0 a ¼ 0

1

3c
exp � UðxÞ

kBT

� �
ea � F a ¼ 1; 2; 3; 4

1

12c
exp � UðxÞ

kBT

� �
ea � F a ¼ 5; 6; 7; 8

8>>>>><>>>>>:
ð24Þ

The Navier–Stokes equation can be derived from

Eq. (23):

q
ou
ot

þ qu � ru ¼ �rðc2sqÞ þ mqr2uþ F ð25Þ

where the kinetic viscosity

m ¼ ð2s� 1Þ
6

d2x
dt

and the speed of sound

cs ¼
1ffiffiffi
3

p c

In the following analysis, we will consider only steady

state flow satisfying

ou
ox

¼ 0;
ov
ox

¼ 0; and q ¼ const ð26Þ
The body force is assumed to be along the x-direction,
i.e., F ¼ qGix, including external pressure-driven force

and electro-viscous force due to electrokinetic potential.

In this type of flow, both the velocity and the distribu-

tion functions are only functions of the y-coordinate. We

define that the node j ¼ 0 and j ¼ n corresponds to

lower and upper boundaries, respectively, where

the evolution rule depends on the implementation of

boundary conditions. By substituting Eqs. (20) and (26)

into Eq. (23) within the flow domain ð26 j6 n� 2Þ, the
x-component of the momentum density quj can be re-

written as

quj ¼ c ðf j
1



� f j

3 Þ þ ðf j
5 � f j

6 Þ þ ðf j
8 � f j

7 Þ
�

¼ 2

3
qU

�
� 1

�
� 2

3
U

�
q
s� 1

s
þ q

s� 1

s
1� U
s



uj

þ qU
6s

�
þ q

s� 1

s
1

�
� 2

3
U

�

ðujþ1 þ uj�1Þ

þ qU
2sc

ðuj�1vj�1 � ujþ1vjþ1Þ þ
dtqUG

s
ð27Þ

For Poiseuille flow, the vertical velocity is zero and

Eq. (27) can further reduce to

4

3
U

��
� 2

�
sþ 1

�
� 2

3
U

�
þ s� 1

s
ð1� UÞ



uj

þ 5

6
U

��
� 1

�
þ s 1

�
� 2

3
U

�

ðujþ1 þ uj�1Þ

þ dxUG
c

¼ 0 ð28Þ

where U ¼ expð�UðxÞ=ðkBT ÞÞ. By defining the following

three parameters as

U1 ¼
4

3
U

�
� 2

�
sþ 1

�
� 2

3
U

�
þ s� 1

s
ð1� UÞ

U2 ¼
5

6
U

�
� 1

�
þ 1

�
� 2

3
U

�
s

U3 ¼
dxUG
c

Eq. (28) can be written as

U1uj þ U2ðujþ1 þ uj�1Þ þ U3 ¼ 0 ð29Þ

and the solution of Eq. (29) becomes

uj ¼ � U3jðn� jÞ
ðU1 þ 2U2Þjðn� jÞ � 2U2

þ Us ð30Þ

where Us is the slip velocity depending on the imple-

mentation of the boundary condition for walls in a

particular scheme. In order to find out the slip velocity,

we need to apply Eq. (27) at the grid line next to the

bottom wall (j ¼ 1) and the analysis for the top

boundary is the same:

U1u1 þ U2ðu0 þ u2Þ þ U3 þ ðs� 1Þð eu0u0 � u0Þ ¼ 0 ð31Þ
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where q eu0u0 ¼ c ðf 0
1



� f 0

3 Þ þ ðf 0
5 � f 0

6 Þ þ ðf 0
8 � f 0

7 Þ
�

f 0
5 and f 0

6 depend on the boundary condition imple-

mented. Using Eqs. (30) and (31), we obtained the ex-

plicit expression for the slip velocity:
Us ¼
U3

U1ðn� 1Þ
ðU1 þ 2U2Þðn� 1Þ � 2U2

þ U2ðn� 2Þ
ðU1 þ 2U2Þðn� 2Þ � U2

� 1

� �
� ðs� 1Þð eu0u0 � u0Þ

U1 þ U2

ð32Þ
By the modified bounce-back rule, we mean that colli-

sion and forcing still occur at boundary nodes. The pre-

collision unknown distribution is set equal to the value

of the distribution along the opposite direction:

f 0
2 ¼ f 0

4 ; f 0
5 ¼ f 0

7 ; and f 0
6 ¼ f 0

8

With the modified bounce-back rule, we can show that
Us ¼
U3

U1ðn� 1Þ
ðU1 þ 2U2Þðn� 1Þ � 2U2

þ U2ðn� 2Þ
ðU1 þ 2U2Þðn� 2Þ � U2

� 1� 2

3
ðs� 1Þs

� �
U1 þ U2

ð33Þ
3.2. Model prediction and comparison with experimental

results

To verify our theoretical analysis, we have further

carried out numerical simulation for electrokinetic flow

in microchannel. The dimensions of the microchannels

were selected to be 5 mm in width and 30 mm in length;

three microchannels of 14.1, 28.2 and 40.5 lm in height

are also used. The choice of these parameters reflect our

intention to compare the microchannel data reported by

Ren et al. [43] as closely as possible. Such microfluidics

flow can be described as a function of only the height-

coordinate of the microchannel. If gravity effect is neg-

ligible, the body force F depends only on the externally

applied pressure and the induced electrical field.

F ¼ qG ¼ dP
dx

� �
ext

� jqeExj ð34Þ

where qe is the net charge density per unit volume at any

point in the liquid; the electrokinetic potential Ex can be

obtained through a balance between streaming current

and electrical conduction current at steady state:

Ex ¼ � qeuðyÞ
k0 þ kks

ð35Þ

where uðyÞ is the velocity along the channel, k0 is the

electrical conductivity of the liquid, and ks is the surface
conductance.

The number of ion distribution in a symmetric elec-

trolyte solution is of the Boltzmann distribution form:
qe ¼ �2ze � n0 sinh
zew
kBT

� �
ð36Þ

where w is the electrical potential at any point in the

liquid, n0 and z are the bulk ionic concentration and
valence of ion, respectively, e is the charge of a proton,

kB is the Boltzmann constant and T is the absolute

temperature.

To determine the electrokinetic potential Ex, the

Poisson–Boltzmann equation and the equation of mo-

tion should be solved simultaneously. For the sake of

simplicity, two approximate relations are employed to
obtain the electrokinetic potential. The charge distribu-

tion in the solution is governed by the potential at the

solid–liquid interface. The solution of the one-dimen-

sional Poisson–Boltzmann equation for a specified

boundary condition is

w ¼
2kBT
ze ln

1þ c expð�kBjdxÞ
1� c expð�kBjdxÞ

� �
jdx 6H

2kBT
ze ln

1þ c expð�kBðn� jÞdxÞ
1� c expð�kBðn� jÞdxÞ

� �
jdx > H

8>><>>:
ð37Þ

where c ¼ ðexpðzef=2kBT Þ � 1Þ=ðexpðzef=2kBT Þ þ 1Þ ¼
tanhðzef=kBT Þ, f is the zeta potential at the shear plane,

k is the Debye–Huckel parameter as k2 ¼ 2z2e2n0=
�r�0kBT , �r is the relative dielectric constant of the solu-

tion, �0 is the permittivity of vacuum and H is the half of

height of a rectangular microchannel. The fully devel-

oped velocity profile for laminar is employed to deter-

mine the electrokinetic potential in a way that is

computationally economical while retaining the basic

behavior of the flow.

uðyÞ ¼ 4H 2

2l
dP
dx

� �
ext

jdx
2H

� �"
� jdx

2H

� �2
#

ð38Þ

By substituting Eqs. (36)–(38) into Eq. (35), we can

obtain the body force term in the solution Eq. (30) of the

9-bit lattice Boltzmann single-relaxation-time model

(Fig. 1), which will be used to study electrokinetic effect

of liquid flow through a microchannel as the height is
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Fig. 1. Velocities of the 9-bit lattice model.

Table 1

Comparison of the experimental values for dP=dx versus Re in

Ref. [43] with the predictions from the lattice Boltzmann ana-

lytical model for a microchannel of 14.1 lm in height using 10�2

M KCl solution, 10�4 M KCl solution and DIUF water

dP=dx (106 Pa/m) Re [43] Re (Predicted)

10�2 M KCl solution

1.93 1.00 0.93

2.60 1.31 1.26

3.32 1.52 1.61

3.82 1.79 1.85

10�4 M KCl solution

2.28 1.04 0.98

3.04 1.29 1.30

3.60 1.54 1.54

4.29 1.85 1.84

DIUF water

2.35 0.98 0.95

3.08 1.28 1.25

3.71 1.52 1.51

4.43 1.79 1.80

Table 2

Comparison of the experimental values for dP=dx versus Re in

Ref. [43] with the predictions from the lattice Boltzmann ana-

lytical model for a microchannel of 28.2 lm in height using 10�2

M KCl solution, 10�4 M KCl solution and DIUF water

dP=dx (106 Pa/m) Re [43] Re (Predicted)

10�2 M KCl solution

2.32 8.62 8.27

2.82 10.77 10.06

3.39 12.92 12.09

3.89 15.15 15.25

4.45 17.38 17.45

10�4 M KCl solution

2.58 8.62 8.72

3.08 10.77 10.42

3.58 12.92 12.11

4.08 15.15 15.06

4.58 17.38 16.91

DIUF water

2.68 8.62 8.44

3.16 10.77 9.96

3.69 12.92 12.71

4.18 15.15 14.76

4.71 17.38 16.64
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small in comparison with the channel width. The ex-

perimentally determined pressure gradients for the three

different channel heights (14.1, 28.2 and 40.5 lm) and

three electrolyte solutions (de-ionized ultra-filtered wa-

ter (DIUF), aqueous KCl solution of 10�4 and 10�2 M

concentrations) were applied to our model to predict the

Reynolds numbers. Since these data were not tabulated,

we digitized the experimental results in [43] to the best of

our ability and reproduced them here. Other input pa-

rameters for the solutions and channel were obtained

from [43]. The Reynolds number was calculated from

Re ¼ qumDh

l

where Dh ¼ 4HW =ðH þ W Þ is the hydraulic diameter of

the rectangular channel of width 2W , height 2H ; um is

the mean velocity and l is the dynamic viscosity of the

liquid. According to the lattice Boltzmann model, the

kinetic viscosity can be expressed as

m ¼ 2s� 1

6

d2x
dt

To ensure the above kinetic viscosity from the lattice

Boltzmann model is as consistent as the measured value

mexp, we obtain the lattice constant from

dx ¼
6mexp

ð2s� 1Þc

The only remaining parameter is the dimensionless re-

laxation time sðs > 0:5Þ, which represents the interpar-

ticle interactions of a given system and was adjusted to

fit the results. The model predictions together with the

experimental data are shown in Tables 1–3 and in Figs.

2–4. It is apparent that the predicted Reynolds numbers

Re are in excellent agreement with those determined

experimentally for the three electrolyte solutions in dif-

ferent channel sizes. With respect to the 40.5 lm channel

in Table 3, we were not able to distinguish the experi-

mental data between the cases for DIUF water, 10�2 and
10�4 M of KCl solutions. Thus, only one set of experi-

mental data was reported in Table 3 and compared

against three sets of model results. The predictions from

9-bit square lattice Boltzmann model agree very well

with the experimental data. The differences between the



Table 3

Comparison of the experimental values for dP=dx versus Re in Ref. [43] with the predictions from the lattice Boltzmann analytical

model for a microchannel of 40.5 lm in height using 10�2 M KCl solution, 10�4 M KCl solution and DIUF water

dP=dx (106 Pa/m) Rea [43] Re (Predicted)

10�2 M KCl 10�4 M KCl DIUF water

1.64 16.92 16.69 16.93 16.97

2.05 21.15 20.86 21.17 21.22

2.36 25.00 24.01 24.37 24.43

3.14 33.46 34.05 32.43 32.51

3.86 41.92 41.86 39.86 41.15

4.64 50.77 50.31 49.13 49.46

5.31 59.00 58.73 56.95 57.78

aWe reported here only one set of data because the experimental data in [43] for the three liquids appear to be the same.

Fig. 2. Comparison of the experimentally determined dP=dx
versus Re relationships in Ref. [43] with the predictions from the

9-bit square lattice Boltzmann model for a microchannel of 14.1

lm in height.

Fig. 3. Comparison of the experimentally determined dP=dx
versus Re relationships in Ref. [43] with the predictions from

the 9-bit square lattice Boltzmann model for a microchannel of

28.2 lm in height.
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predicted and experimental values are well within 5% for

the systems studied. The lattice Boltzmann model in the

presence of external force presented in this paper is an

effective computational tool for complex microfluidic

systems that might be problematic using conventional

methods.
4. Summary

We have derived a lattice Boltzmann model in the

presence of external forces for microfluidics with
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Fig. 4. Comparison of the experimentally determined dP=dx
versus Re relationships in Ref. [43] with the predictions of the 9-

bit square lattice Boltzmann model for a microchannel of height

40.5 lm.
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electrokinetic phenomena. The external force field con-

sidered here is the applied external pressure for liquid

flow. Excellent agreement was found between the results

from our 9-bit square lattice Boltzmann model and

those from recent experimental data for pressure-driven

microchannel flow of electrolyte solutions. The lattice

Boltzmann model established here is shown to be an

effective computational tool for more complex micro-

fluidic systems that could not be described by conven-

tional approaches.
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